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What Does Pasting Manage in OMPs? 
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A generalized pasting method for orthomodular structures by Navara and 
Rogalewicz (1991) is sketched. Many applications are presented. It is demon- 
strated that the method enables to prove valuable nontrivial results. 

1. INTRODUCTION 

Pasting of  Boolean algebras according to Greechie (1971) appeared 
to be a powerful tool in generating examples of  orthomodular lattices 
(OMLs) and orthomodular posets (OMPs). However, this method has very 
strict limitations: the Boolean algebras (blocks to be) have to be atomistic, 
and their intersections can contain, next to minimal and maximal elements, 
only one atom and its coatom. Other "pasting" methods were introduced 
by Krausser (1982) and Dichtl (1984). Kalmbach (1984) summarized and 
slightly generalized all these methods in her monograph. 

Later we proved that any OMP can be considered as pasting of  its 
blocks in Dichtl's sense (Rogalewicz, 1988). Nonetheless, Dichtl's method 
has never been really utilized, probably because of  its difficult and non- 
transparent way of  verification of the assumptions. In order to overcome 
some of these difficulties, we developed new pasting rules and completed 
them with a new method of atom substitutions (Navara and Rogalewicz, 
1991). The new features of  our method are: 

�9 Not  only blocks, but prefabricated simpler OMPs and/or OMLs can 
be pasted together; thus, many conditions are trivially satisfied 
because of  their validity in the original OMP. 
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�9 "Continuous" pasting is possible, i.e., the original blocks or posers 
need not be atomistic, and the intersection can consist of infinitely 
(even uncountable) many elements. 

�9 The conditions are given also for a-orthocomplete OMPs, so that 
the result of  pasting can be a-orthocomplete. 

�9 Projective limits are presented as a type of  pasting. 
�9 Any atom can be substituted by another OMP. 

In this note, I would like to point out several successful applications of 
the results of Navara and Rogalewicz (1991). 

2. BASIC NOTIONS AND RESULTS 

Let L be an OMP. For a detailed introduction, see, e.g., Kalmbach 
(1984) or Ptfik and Pulmannovfi (1991). I f  a, bEL, a <b, we put 
[a, b]L = {cELia < c < b}, and call [a, b]L an interval in L. The following 
definition plays the central role in pasting: 

Definition. Let Ar be a family of OMPs such that all P, Q ~ ~ ,  P # Q, 
satisfy the following conditions: 

(Q1) P • Q. 
(Q2) P :a Q is a sub-OMP of both P and Q, and the partial orderings 

and the orthocomplementations of  P and Q coincide on P n Q. 

Let us endow the set L = U~,~.~ M with the relation <z  and the unary 
operation ,z defined as follows: a -<z b (a = b 'z, resp.) if and only if 
a < ~, b (a = b'U, resp.) for some M ~ LP. The set L with < z, ,L is called the 
pasting of  the family .~e. 

Now we can introduce our main results. The first theorem presents the 
necessary and sufficient conditions for a pasting of  a family of  OMPs so 
that it would be an OMP. These conditions are modified in the next 
theorem to a form suitable for applications. Then we present a supplemen- 
tary condition guaranteeing that the pasting results in an OML. Finally, 
the substitution of  an atom is formulated explicitly. All proofs are to be 
found in Navara and Rogalewicz (1991). 

Theorem. The pasting L of a family L~ of OMPs is an OMP if and 
only if the following two conditions hold: 

(R1) The relation <z  is transitive. 
(R2) If  a .1_ M b for M~L,  then a VM b = a vz b. 

Theorem. Let L be the pasting of a family .~ of OMPs. Let .~ satisfy 
the following conditions: 
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(SI) For each P, Q~AF and for each a s P c ~ Q  there is a TeS~ such 
that [0, ale w [0, a']Q c T. 

($2) If  a, b, c s L  are pairwise orthogonal (in L), then there is an 
M ~ A  a such that {a, b, c} c M. 

Then L is an OMP. 

Theorem. Let the pasting L of a family A a of OMLs be an orthocom- 
plete OMP. Then the following condition is necessary and sufficient for L 
to be an OML: 

(L2) If  c, d ~ L  are any upper bounds of a, b sL,  then there is an upper 
bound e of both a and b such that e < c, e --- d. 

Theorem. Let K, L be OMPs and let a be an atom in K. We denote by 
b the coatom a 'x and by M the product [0, b]K • L. For all c~[0, b]K we 
unify c (~K) with (c, OL)~M and c vK a ~ K w i t h  (c, 1L)~M. We endow the 
union P = K u M with the partial ordering equal to the union of the 
ordering of K and M. The orthocomplementation on P is defined as 
follows: 

(i) I f  c sK,  then c 'P=  c Ix. 
(ii) I f  c ~ M - K ,  then c is of the form ( d , e ) s M  and c ' e = c ' ~ =  

(d 'K ̂ K e 'L) ~M. 

Then P is an OMP. We say that P originated in the substitution of the 
atom a in K with the OMP L. 

3. APPLICATIONS 

3.1. Examples of  O M P s  with Particular Properties 

This is just a selection of such examples: 
(a) A finite OML in which every block has the same cardinality k is 

called 2-regular if each atom is a member of just 2 blocks. Being given )[ ~ N 
and k >-4, we construct a )[-regular OML with )[2 blocks (gogalewicz, 
1989). This improves the estimation of cardinality of such OMLs (K6hier, 
1982) qualitatively. 

(b) There exists an infinite OMP with a finite set of generators, the 
sublogics of which are only concrete (=se t  representable) logics (go-  
galewicz, 1991). (On the other hand, finitely generated concrete logics are 
finite.) 

(c) Orthosymmetric OMLs were introduced by Mayet (1991). Modu- 
lar lattices need not admit an orthosymmetric structure, and orthosymmet- 
ric OMLs need not have a strong set of states (Hamhalter and Navara, 
1991). 
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(d) There is an atomistic OML L such that each atom is noncompat- 
ible only with a finite number of atoms, but L cannot be expressed as a 
product of simpler OMLs (Pulmannov~t and Rogalewicz, 1991). 

(e) There exist OMLs admitting no nontrivial group-valued measure 
(Navara, 1992c). 

3.2. Logics with Predetermined Centers, State Spaces, and 
Automorphism Groups 

Let K be an OMP whose state space is nonvoid. Let B be a Boolean 
algebra, C a compact convex subset of a locally convex topological linear 
space, and G a group. Then K can be enlarged to an OMP L such that the 
center of L equals B, the state space of L equals C, and the group of 
automorphisms equals G (Navara et al., 1988; Navara, 1992b). The result 
remains valid if we substitute the abbreviation "OML" for "OMP." 
Generalized pasting is the main tool in the construction of L; moreover, 
these constructions are impossible in the Greechie's or Dichtl's approaches. 

Every concrete OMP can be enlarged to a concrete logic with a given 
automorphism group and a given center (Navara and Tkadlec, 1991). Since 
not every state space of a (general) OMP is affinely homeomorphic to the 
state space of a concrete logic, the assumption concerning the state space is 
not possible in concrete OMPs. In a-orthocomplemented OMPs or OMLs, 
every OMP (with a nonvoid state space) can be enlarged to an OMP with 
an arbitrary center and an arbitrary state space under the condition that 
the center admits at least one two-valued state (Navara and Pt~ik, 1982). 

These results show that the pasting techniques can be used not only to 
generate a series of examples and counterexamples, but also to help in 
proving deep positive results. 

3.3. Description of the State Space of an OML 

One of the first utilizations of the pastings due to Greechie (1971) was 
the result by Shultz (1974) characterizing the state space of a (finitely 
additive) OML: Each compact convex set is affinely homeomorphic to the 
state space of an OML. Using our generalized pasting technique, Navara 
(1992a) gave a much simpler proof of this theorem. 

Moreover, Navara and Rfittimann (1991) found a similar theorem for 
the a-additive case. They introduced the notion of s-semiexposed faces of 
a compact convex subset of a locally convex Hausdorff topological vector 
space. They showed that every s-semiexposed face of any compact convex 
set is affinely homeomorphic to the a-state space of an OMP. Generalized 
pasting plays an important role in the proof. 
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